Форумы > Консультация по матанализу > Исследовать сходимость числового ряда!

Страницы: 1 2 3 4 5 6 7 8 9

Поиск
Автор Сообщение
Юлия #
29 мая 2009
Помогите пожалуйста исследовать на сходимость ряд: сумма от 1 до бесконеч (-1)^n * tg(1/n)...А еще найти область сходимости функционального ряда: сумма от 1 до бесконеч (lnn/n!)*(x-1)^n....
О.А. #
30 мая 2009
1) нужно использовать признак Лейбница 2) радиус сходимости степенного ряда находится по формуле$R=\lim_{n\rightarrow \infty}\frac{a_{n}}{a_{n+1}}$, где $a_{n}$-коэффициент ряда, область (интервал)сходимости$|x-a|<R$затем проверяется сходимость на концах интервала сходимости
Mike #
30 мая 2009
Найти область сходимости ряда от 1 до бесконечности (((3*х - 1)^n)/arctg(n))*1/(n+1) Определить сходится или расходится ряд от 1 до бесконечности (n+ln(n))/((n^3)+1) Подскажите, пожалуйста, как решить. Заранее спасибо.
О.А. #
30 мая 2009
1) нужно использовать признак Даламбера $\lim_{n\rightarrow \infty}|\frac{u_{n+1}(x)}{u_{n}(x)}|=l$если$l<1$, то ряд сходится 2) используйте признак сравнения, получите мажоранту для данного ряда
Mike #
31 мая 2009
Спасибо. А с чем сравнивать при использование признака сравнения (ln(n))/(n^3+1) для сходимости?
О.А. #
31 мая 2009
$\ln n<n \forall n$
Mike #
1 июн 2009
Спасибо. Посмотрите пожалуйста решение примера на сходимость, мне преподователь говрит читай признак Даламбера... http://s44.radikal.ru/i106/0906/44/3c8de5c171cd.jpg Я ошибся или что-то не учитываю? Заранее спасибо
О.А. #
1 июн 2009
внимательно посмотрите, что я вам написала в признаке Даламбера, там стоит предел модуля отношения, а у вас модуля нет в решении, поэтому неравенство будет$|3x-1|<1$
Mike #
1 июн 2009
спасибо! А посмотрите пожалуйста правильно ли я решил вот этот пример http://s45.radikal.ru/i109/0906/e1/6ae421b56499.jpg
О.А. #
2 июн 2009
да, как один из вариантов решения
Mike #
2 июн 2009
окей, а подскажите ещё как доказать что ln(n)<n при n от 1 до бесконености
Mike #
2 июн 2009
Доказал вот так ln(n)=x => n=e^x => ln(e^x)=x ln(e^n)=n если x<n то ln(e^x)<ln(e^n) ln(e^x)<n ln(e^x)<e^x Как думаете верно?
О.А. #
2 июн 2009
данное неравенство следует из графиков кривой и прямой
Люба #
3 июн 2009
И еще посмотрире пожалуйста: найти общий интеграл yy'+x=0
О.А. #
3 июн 2009
данная консультация по математическому анализу

Страницы: 1 2 3 4 5 6 7 8 9

Форумы > Консультация по матанализу > Исследовать сходимость числового ряда!
Чтобы написать сообщение, необходимо войти или зарегистрироваться